

Contents

I		Introduction	2
II		Results Overview 1 Accessibility of Services & Innovativeness of the City	10
III		Results Overview 2 Physical Accessibility & Diversity of the Urban Environment	15
IV		Methodology	20
	IVa	Selection of Cities for Analysis	21
	IVb	Determination of Urban Boundaries	22
	IVc	Selection of Indicators	22
	IVd	Calculating of the Final Rating	23
V		Further Discussion	2/1

Introduction

The concept of urban development objectives has evolved in parallel with the advancement of urban planning theory and practice. Contemporary approaches have moved away from idealized city structures towards creating more accessible environments that cater to the needs of diverse populations. However, assessing the comfort of urban settings, which is a crucial indicator of accessibility, continues to be a complex task due to subjective interpretations and dependence on numerous variables.

To comprehensively assess the quality of urban environment, it is suggested to use the criterion of resident time spent. It is our opinion that time has become a limiting factor in terms of living comfort in modern, large metropolitan areas. The costs associated with transportation, access to public services, and the purchase of essential goods, among others, account for a significant portion of "mandatory expenditures" in our daily time budget. These expenses are essential for maintaining our livelihoods in the fast-paced urban environment.

It is important to take into account the time spent accessing essential urban services, both physically and digitally. Saving time is essential due to its potential future use, either for personal development or economic activity. By reducing the time required to access urban services, cities can address a major concern of their inhabitants.

There are two main types of accessibility: active and passive. Active accessibility refers to the time needed for individuals to travel independently to a service, while passive accessibility relates to the waiting time for service provision. The former is closely linked to physical infrastructure, whereas the latter relates to digital services. However, this division is somewhat arbitrary as both forms of accessibility may utilize both physical and virtual elements.

Our study assesses the availability of services based on three key criteria: variety, quality, and timeliness. Modern cities are shaped by a balance between these elements, where reducing time-related costs contributes to enhancing the quality of life for residents.

A detailed description of the research methodology can be found in the "Methodology" section of this report. In this section, we will discuss the basic principles that underlie the development of our methodology. We recognize that the balance between time and service quality is crucial in creating a successful service experience for users in today's metropolitan areas, where digital and physical service offerings coexist.

Our Index fundamentally evaluates differentiation on two main levels: between cities and within individual cities. This allows us not only to provide an in-depth assessment of urban development, but also to identify the most effective aspects of a city and those that require support for development. Additionally, it assists in smoothing out imbalances related to city size, as a large metropolitan area might have favorable environmental indicators due to the concentration of resources, yet the distribution between central and peripheral areas might be uneven. For our purposes, inequality does not simply refer to a binary distinction between "more" or "less," but rather to an unequal distribution of resources and opportunities across the various neighborhoods within a city.

In addition to assessing internal differences, our Index provides a significant advantage in the high level of comparability of results across cities in different countries. Most comparative rating systems rely on statistical data collected from various countries using different methodologies, which can vary in terms of reliability. To ensure consistency and accuracy, we propose continuing with spatial analysis using a common methodological approach.

Additionally, we will refrain from relying on administrative city boundaries, as these are often more political in significance than their impact on people's daily lives. The growth of urban areas is influenced by factors such as the proximity of agglomerations, commuting patterns, and suburbanization processes, which may result in actual urban boundaries that are significantly wider than the administrative ones.

This publication provides a summary of the results from the second edition of the UIEI rating. The UIEI Core Rating covers the 50 largest urban areas in the world. Following a thorough international review of the 2023 results, the consortium team revised the methodology used to calculate the Index. This revision may result in some discrepancies when directly comparing this year's results with those of previous years. Nevertheless, the underlying principles of the Index remain unchanged.

Below are two tables, one showing the final city rating (Figure 1a) and another for BRICS cities (Figure 1b). For the top 10 cities in the final rating, we have provided a brief summary that highlights their success factors – the features of their environment and society that contribute to their status as the most liveable cities in our assessment.

It should be noted that by highlighting the competitive advantages of our index, there are limitations, as with any assessment of complex urban processes. The initial data and calculations may contain some distortions, motivating us to continue research to improve the results.

We hope this research and its outcomes will be of interest not only to us, but also to a wide range of stakeholders and experts concerned with making the globalized and urbanized world more hospitable, convenient, and sustainable for all its inhabitants.

We are pleased to announce the release of the short version of the UIEI Core Rating today, which contains the key findings. We intend to publish the full report in the first half of 2025.

Figure 1a.
Final Rating of Agglomerations

Rank	Grade	Agglomeration	Total Score	Rank	Grade	Agglomeration		Total Score
1	A+	London	8,015	26	B+	Bangalore	•	5,904
2	A+	Seoul	7,511	27	B+	Sao Paulo		5,855
3	A+	Madrid	7,461	28	B+	Mumbai		5,826
4	A+	Moscow	7,458	29	B+	Boston	•	5,807
5	A+	Paris	7,435	30	B+	Bangkok		5,799
6	A+	Shanghai	7,432	31	B+	Kuala Lumpur	•	5,783
7	A+	Tokyo	7,315	32	B+	Dacca		5,702
8	A+	Singapore	7,248	33	B+	Ho Chi Minh		5,676
9	A+	Osaka	7,157	34	B+	Rio de Janeiro		5,583
10	Α	Saint Petersburg	6,947	35	B+	Xiamen		5,529
11	Α	Guangzhou	6,854	36	В	Riyadh		5,489
12	Α	Berlin	6,844	37	В	Buenos Aires		5,475
13	Α	New York	6,720	38	В	Manila		5,455
14	Α	Istanbul	6,571	39	В	Kolkata	•	5,386
15	Α	Beijing	6,543	40	В	Jakarta		5,276
16	Α	Milan	6,536	41	В	Lima		5,266
17	Α	Toronto	6,529	42	B-	Delhi		5,211
18	A-	Chicago	6,487	43	B-	Tehran		5,180
19	A-	Shenzhen	6,475	44	B-	Karachi		5,128
20	A-	Washington	6,457	45	B-	Mexico City		5,068
21	A-	Chengdu	6,291	46	С	Cairo		4,927
22	A-	Los Angeles	6,153	47	С	Cape Town		4,138
23	A-	Dubai	6,058	48	С	Addis Ababa	•	4,077
24	A-	Sydney	6,004	49	С	Johannesburg		3,735
25	B+	Bogotá	5,906	50	С	Lagos		3,682

Figure 1b.
Final Rating of Agglomerations of BRICS

Rank	Grade	Agglomeration	Total Score
1	A+	Moscow	7,458
2	A+	Shanghai	7,432
3	А	Saint Petersburg	6,947
4	А	Guangzhou	6,854
5	А	Beijing	6,543
6	A-	Shenzhen	6,475
7	A-	Chengdu	6,291
8	A-	Dubai	6,058
9	B+	Bangalore	5,904
10	B+	Sao Paulo	5,855
11	B+	Mumbai	5,826
12	B+	Rio de Janeiro	5,583
13	B+	Xiamen	5,529
14	В	Kolkata	5,386
15	B-	Delhi	5,211
16	B-	Tehran	5,180
17	С	Cairo	4,927
18	С	Cape Town	4,138
19	С	Addis Ababa	4,077
20	С	Johannesburg	3,735

TOP-10 Overview

London has achieved significant success in enhancing the usability of one of its icons – the taxi. As one of the pioneers in the world, the capital of Great Britain introduced a paid entry system and paid parking in the city center. These measures aimed at addressing congestion in the transportation system have rendered private car ownership unprofitable, making taxi accessibility a priority in London's urban development. In addition, the city boasts a high scientific potential as a world-class research center in various fields, such as medicine and economics.

<u>Seoul</u> is the leading city in most metrics related to digital service availability. Within this metropolitan area, taxi hailing services, goods delivery, grocery delivery, restaurant takeout, sharing services and digitalized public services are all developed at a similar level. The intricate spatial structure of the metropolitan area, with its two main centres in Seoul and Incheon, is becoming increasingly friendly to its residents thanks to the extensive integration of internet solutions into daily life. The balanced provision of various online services contributes to high levels of trust in e-commerce and a "digitalized state", maximizing time savings for residents.

Madrid, with its well-planned spatial development, boasts a highly developed telecommunications infrastructure. As Spain as a whole is among the world's leaders in renewable energy production and is committed to low-carbon growth, personal vehicles are often not the preferred mode of transportation in Madrid, which has contributed to the popularity of carsharing services. Additionally, delivery networks are well-established due to the traditional popularity of personal mobility equipment in the city.

<u>Moscow</u> has implemented a highly convenient and user-friendly system of electronic interaction between residents and city and public services. The high speed and coverage of mobile internet in the city allow users to access online services from anywhere. Services have been significantly improved as a result of the impact of the coronavirus pandemic and increased popularity of delivery services. Under conditions of heavy traffic and crowded public transportation, e-commerce often proves to be more cost-effective than visiting physical stores and restaurants.

Paris is a premier tourist destination and it must be highly convenient for visitors from around the world in terms of access to cultural attractions. This city boasts a wealth of cultural opportunities, thanks to the significant number, high quality, and wide accessibility of museums, galleries, theatres, and concert halls available within its relatively small footprint. Considering the size of the city, the level of cultural activity is particularly impressive. The French government's highly centralized public administration system ensures that digital government services are also widely available in Paris.


Shanghai has a well-developed delivery system for a wide range of products and items. Customers can conveniently and efficiently order all items that are available for purchase online from the comfort of their own homes. However, there is an issue with traffic congestion in the largest city of China, which can be addressed by reducing the use of private motor vehicles and alleviating the burden on public transportation in favor of delivery services, thereby saving time and improving the environmental situation. This can be achieved through the extensive use of low-powered modes of individual mobility, and more recently, autonomous unmanned vehicles.

<u>Tokyo</u> stands out for its high scientific potential. The city generates a vast number of innovative ideas and creative solutions that will improve the quality of life not only in Japan but also around the globe. Modern research conducted in Tokyo's research centers focuses on areas relevant to urban development, such as artificial intelligence, robotics, and biotechnology. Among online services, delivery of goods and products from stores is the most developed.

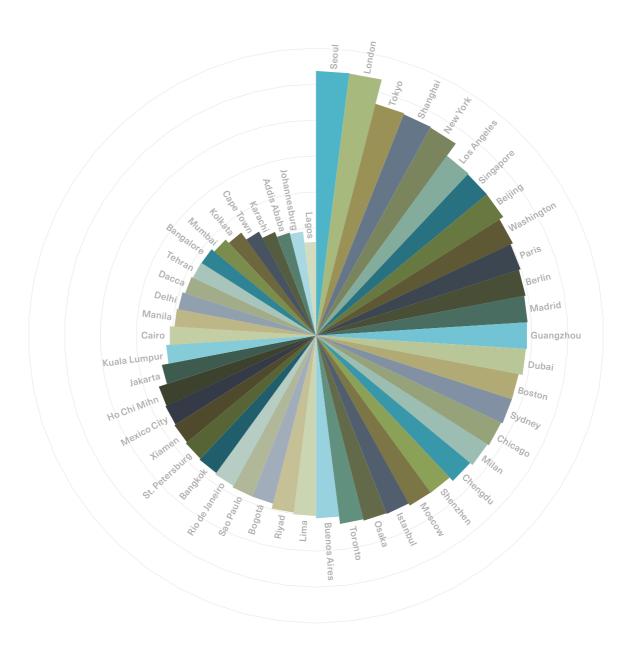
<u>Singapore</u> has a highly developed system of digital public service delivery. As a city-state, it is essential to clearly allocate various functions among different executive bodies, and in this context, it is crucial to streamline the interaction between citizens and the bureaucracy. Other online services within the city are also well-developed.

Osaka, as an alternative to Tokyo, provides a similar range of advantages, albeit with less scientific potential but a greater cultural aspect. While Tokyo also boasts a wide variety of cultural and recreational facilities, Osaka benefits from its capital status due to its lower population density. Additionally, the quality of internet connectivity is superior in Osaka, which could be attributed to lower network congestion.

St. Petersburg lags behind Moscow in the development of online services due to their popularity being directly linked to the well-being of citizens. Nevertheless, the market for these services is shaped by the same players, so the high level of digitalization typical for Russian megapolices continues to spread into new areas of consumer activity. Most indicators are close to those in Moscow, and one of the strengths of St. Petersburg is its excellent pedestrian accessibility thanks to its extensive public transport network, including metro, buses, trolleybuses, trams, and electric buses.

Results
Overview 1

Accessibility of Services & Innovativeness of the City


Figure 2.
Ranked list of agglomerations according to the Accessibility of Services & Innovativeness of the City

Rank	Agglomeration	Total Score	Rank	Agglomeration	Total Score
1	Seoul	3,680	26	Lima	2,506
2	London	3,675	27	Riyadh	2,482
3	Tokyo	3,327	28	Bogotá	2,410
4	Shanghai	3,312	29	Sao Paulo	2,409
5	New York	3,303	30	Rio de Janeiro	2,384
6	Los Angeles	3,092	31	Bangkok	2,363
7	Singapore	3,081	32	Saint Petersburg	2,349
8	Beijing	3,079	33	Xiamen	2,328
9	Washington	3,020	34	Mexico City	2,312
10	Paris	2,988	35	Ho Chi Minh	2,297
11	Berlin	2,962	36	Jakarta	2,181
12	Madrid	2,943	37	Kuala Lumpur	2,088
13	Guangzhou	2,933	38	Cairo	2,034
14	Dubai	2,920	39	Manila	1,970
15	Boston	2,862	40	Delhi	1,952
16	Sydney	2,861	41	Dacca	1,913
17	Chicago	2,842	42	Tehran	1,891
18	Milan	2,822	43	Bangalore	1,885
19	Chengtu	2,775	44	Bombay	1,835
20	Shenzhen	2,706	45	Kolkata	1,772
21	Moscow	2,700	46	Cape Town	1,650
22	Istanbul	2,665	47	Karachi	1,551
23	Osaka	2,659	48	Addis Ababa	1,477
24	Toronto	2,639	49	Johannesburg	1,458
25	Buenos Aires	2,539	50	Lagos	1,304

Figure 3.

Accessibility of Services

& Innovativeness of the City

TOP-4 Overview

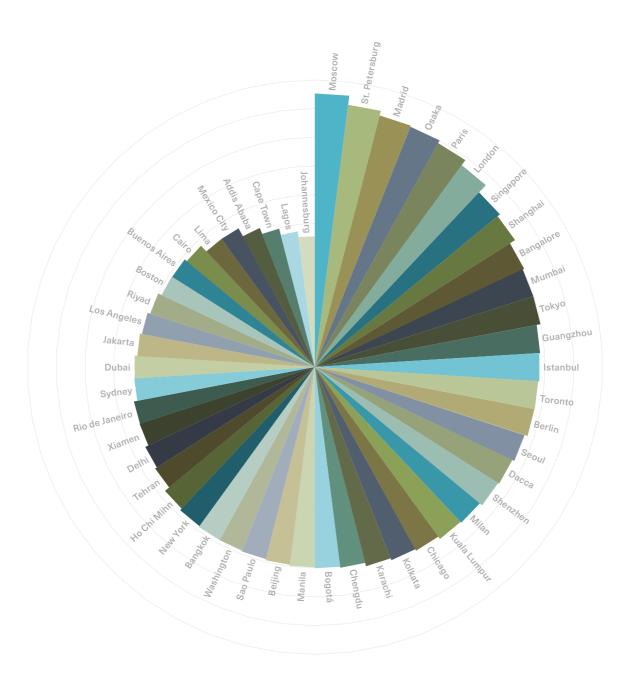
Seoul The Republic of Korea, also known as South Korea, is renowned for its vibrant street food scene, making restaurant food delivery a significant aspect of its culture. In terms of both the availability and adoption of grocery delivery services, Seoul holds a leading position in our rating. Public and individual nutrition both play a crucial role in the economic development of a modern metropolis. The food industry remains a significant contributor to the economy even in post-industrialized countries. Thus, the convenience provided by food delivery services in Seoul not only enhances the quality of life but also contributes to economic growth. Another area where Seoul stands out is in the provision of electronic and digital services. The city competes closely with Shanghai and London for this distinction, leaving New York in its wake. The capital of the United Kingdom achieves its maximum values in terms of two indicators: availability of shared services and the number of startups. This reflects a combination of high attractiveness for venture capital investors and rapid integration of technological innovations into daily life. The convenience of sharing services, as well as the high penetration of grocery delivery and restaurant delivery services, can help reduce pressure on urban infrastructure and city ecosystems. London also boasts one of the highest levels of digitalization in public services, with the level of accessibility to "digital government" services approaching maximum levels.

<u>Tokyo</u> Japan, in general, and Tokyo, in particular, have a strong scientific base that has been developed over decades. Scientific advancements often focus on ideas to improve the quality of life for citizens, who make up the vast majority of the country's population. These innovations include continuous improvements in the quality of shared services through the use of robotics and artificial intelligence. Citizens in Japan are generally positive towards this type of innovation, as trust in scientific and technological advancement, including in the realm of online services, has traditionally been high in the country.

Shanghai China's largest city, Shanghai, has several advantages that are similar to those of London, such as the high availability of electronic government services and sharing and delivery services. However, Shanghai also has its own unique features that contribute to its success. Firstly, the city has a favorable ratio of taxi prices compared to residents' income levels. This makes it more affordable for residents to use taxis, which in turn contributes to the city's overall accessibility. Secondly, bikesharing is well-developed in Shanghai. The network of bike-sharing services serves a large number of users and is one of the most affordable modes of transportation in the city. Cycling has been promoted in China since the mid-2010s, and its popularity has led to tangible results. When combined with affordable taxi services, cycling allows residents greater flexibility in choosing routes when public transportation is inconvenient.

Results Overview 2

Physical Accessibility & Diversity of the Urban Environment


Figure 4.
Ranked list of agglomerations according to the Physical Accessibility & Diversity of the Urban Environment

Rank	Agglomeration	Total Score	Rank	Agglomeration		Total Score
1	Moscow	4,758	26	Manila		3,485
2	Saint Petersburg	4,598	27	Beijing		3,465
3	Madrid	4,518	28	Sao Paulo		3,447
4	Osaka	4,498	29	Washington		3,437
5	Paris	4,447	30	Bangkok		3,436
6	London	4,340	31	New York		3,417
7	Singapore	4,167	32	Ho Chi Minh		3,379
8	Shanghai	4,120	33	Tehran		3,289
9	Bangalore	4,019	34	Delhi		3,259
10	Mumbai	3,992	35	Xiamen		3,201
11	Tokyo	3,988	36	Rio de Janeiro		3,199
12	Guangzhou	3,921	37	Sydney		3,144
13	Istanbul	3,906	38	Dubai		3,138
14	Toronto	3,890	39	Jakarta		3,094
15	Berlin	3,883	40	Los Angeles		3,060
16	Seoul	3,831	41	Riyadh		3,007
17	Dacca	3,789	42	Boston		2,945
18	Shenzhen	3,768	43	Buenos Aires	,	2,936
19	Milan	3,714	44	Cairo		2,892
20	Kuala Lumpur	3,694	45	Lima		2,759
21	Chicago	3,645	46	Mexico City		2,756
22	Kolkata	3,614	47	Addis Ababa		2,600
23	Karachi	3,578	48	Cape Town		2,488
24	Chengdu	3,516	49	Lagos		2,378
25	Bogotá	3,496	50	Johannesburg		2,277

Figure 5.

Physical Accessibility

& Diversity of the Urban Environment

TOP-4 Overview

Moscow
The city concentrates central functions for a wide range of systems throughout the country, including managerial and corporate functions, as well as cultural activities. As the largest and most densely populated metropolitan area, Moscow also constitutes the largest consumer market in Russia. A balanced urban planning strategy contributes to maintaining a high level of functionality and diversity within the core of an agglomeration. The high-density urban area is characterized by a significant degree of functional independence for its suburbs, which act as independent cities despite providing the Moscow labor market with commuting workers. This independence is reflected in the presence of diverse commercial centers throughout the suburbs and a wide range of social, cultural, and leisure facilities, all in line with urban planning standards. A well-functioning transport system that is continuously evolving allows citizens to significantly reduce travel times despite the size of the agglomeration.

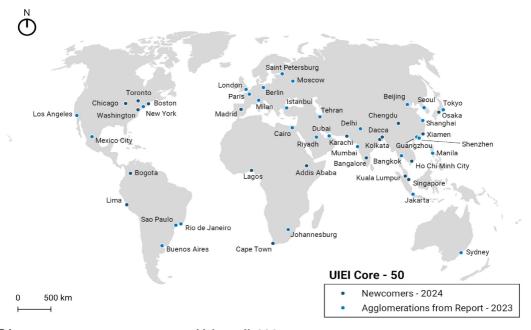
Saint-Petersburg
is comparable to that of Moscow. It is the second-most important center in Russia in terms of all the same criteria as the capital. However, there is a difference in the variety of services available in the suburbs. The suburbs of St. Petersburg often have a monofunctional character, with high-rise residential areas being a common feature, which leads to a lack of diversity in services available to residents. The competitive advantage of St. Petersburg lies in the large number of watercourses, reservoirs and green areas. The city is famous for its rivers and canals, long embankments, which gives its appearance uniqueness and diversity.

Madrid For centuries, Madrid has served as the capital of Spain and has concentrated numerous resources within its borders. This has made it an attractive location for various services, resulting in a high level of functional diversity within the city. The density of buildings, both in the central area of the urban agglomeration and in its outlying regions, has been formed through the accumulation of different urban planning eras, combined with a diverse range of built environment morphologies. The city has been well-landscaped in order to combat heat and also features numerous local nuclei, making walking access to various services convenient.

Osaka The two largest cities in Japan, Tokyo and Yokohama, form a single polycentric agglomeration, while the Osaka-Kyoto agglomeration is located at a distance from the capital that prevents it from experiencing the influence of the capital on its spatial development. This makes Osaka an alternative to Tokyo with fewer problems of overcrowding and a lighter burden on urban infrastructure. As a developed economic hub with a wide range of services, Osaka offers its residents convenient conditions for mobility thanks to excellent public transportation accessibility. Due to its lower building density, Osaka also has a higher street and road network density than Tokyo. This undoubtedly provides a good basis for the development of various territorial services.

IV

Methodology


IVa Selection of Cities for Analysis

The UIEI Core Rating includes the 50 largest urban areas in the world. In comparison to the previous edition, 20 additional urban areas have been added, which have been selected based on the same criteria as the initial 30.

These urban areas are primarily global cities that compete for the attention of highly skilled professionals and are located in various regions of the globe. The newcomers include three megapolices from various parts of Africa (Addis Ababa, Cape Town, and Lagos), two urban areas each from China (Chengdu and Xiamen) and India (Kolkata and Bangalore), as well as important centers in South Asia (Karachi and Dhaka) and Southeast Asia (Singapore, Kuala Lumpur, and Ho Chi Minh). The second largest urban area in Japan, Osaka-Kyoto, has also been added. Madrid has been included from Europe, along with four additional urban areas from North America (Chicago, Washington, Boston, and Toronto) and two capital cities in Latin America (Bogota and Lima).

The main set of criteria for selecting agglomerations has remained unchanged. The selection process involves three sequential stages: 1) the use of quotas; 2) evaluation based on specific criteria; and 3) an expert assessment of each city's significance in the global settlement system. Quotas are determined based on two parameters: the BRICS status; urban population (relative to the global total).

As can be seen, the geographic distribution of new arrivals is quite broad, allowing for a more even coverage of regions of the world. Overall, 249 million people reside in these areas, representing more than 30% of the total population in all 50 agglomerations. Therefore, approximately 10% of the global population resides in this sample of cities.

IVb Determination of Urban Boundaries

The principle of defining urban areas remains unchanged. Instead of relying on administrative city boundaries, which are not always aligned with the spatial distribution of population, we have independently identified urban agglomerations based on urban cores and high-density urban areas. To establish these boundaries, we used indicators such as population density and proportion of developed land within cells of a geographic grid. For each city, we determined threshold values for these indicators using descriptive statistical methods. Additionally, we considered factors such as the continuity of development and transportation accessibility in our analysis.

IVc Selection of Indicators

The methodology for the second issue is largely based on the methodology that was used in the previous year. However, after a thorough discussion with experts, we have made some additions to both the individual indicators and the calculation methods. These additions mean that a direct comparison of the results with those of the previous year is not entirely accurate. We believe that the revised methodology for this second issue is final and will be used for all future releases.

IVc.1 Theoretical Framework 1

Accessibility of Services & Innovativeness of the City

The sub-index of Accessibility of Services and Innovativeness of the City is based on two groups of indicators: Creative Potential and Mobility-As-A-Service. We have summarized the values of parameters related to availability, diversity, and quality of accessible infrastructure; financial accessibility of relevant services for citizens; and the number of users of these services. Since some of the primary data for this block are only available at the country level, we developed a unique methodology to extrapolate these indicators to the city level. To achieve this, we assessed the rank of each city in the national settlement system using the Zipf distribution.

In 2024, only the calculation of the accessibility of cultural objects has changed fundamentally. Instead of being calculated for 10,000 residents, it is now calculated within certain buffer zones surrounding the facilities. This has been done in order to prevent distortions that can occur when many small cultural institutions are located in one area, most commonly in city centers, which may not be at a convenient distance for a significant number of residents.

IVc.2 Theoretical Framework 2

Physical Accessibility & Diversity of the Urban Environment

If the sub-index of Accessibility of Services and Innovativeness of the City is devoted to assessing the passive accessibility of urban facilities, then to understand active accessibility, we used the methodology of analyzing Physical Accessibility and Diversity of the Urban Environment. It is evaluated according to three groups of indicators: Balance of Spatial Development, Transportation Accessibility, and Diversity of the Urban Environment. The indicators were collected using spatial analysis of open geodata and the results of satellite image processing.

To verify the data, we have also used additional information from the official websites of the cities under analysis. The indicators that we have selected allow us to compare the agglomerations and regularly update the underlying data and calculations. The 2024 rating is a reflection of this process.

As part of the revised methodology for this set of indicators, we have included additional indicators related to the accessibility of water bodies, the density of the road network, and the diversity of the functional components of the environment. These additions make it possible to consider the Index as a more comprehensive tool for evaluating the spatial development of cities. Methodologically, the use of different data sources for calculating individual indicators allows for a cross-validation of assessment results, ensuring the accuracy and reliability of the information presented.

IVd Calculating of the Final Rating

12 indicators serve as the fundamental components of the analysis. These indicators are grouped into two categories: Accessibility of Services and Innovativeness of the City, and Physical Accessibility and Diversity of the Urban Environment. Several indicators are composite, incorporating internal variables.

A standard deviation normalization process was utilized to calculate all variables and simple metrics. The maximum standardized value for each metric is 1. Compound metrics were derived as equilibrium sums of internal variables. For simple metrics, a value of 1 does not necessarily represent the maximum possible value. Individual maps for leading cities illustrate the actual values of metrics measured using spatial analytical techniques. The final rating of agglomerations (Figure 1a) is based on the sum of sub-rating in accordance with theoretical foundations. Sub-rating are also derived as the sum of corresponding metrics.

V Further Discussion

The purpose of the rating system is not only to provide answers to the question "how do different cities compare in terms of their level of development?", but also to identify new areas for discussion. Through the development of this system, we have gained some insights that we would like to share with you.

Cities that face various physical limitations for their spatial growth are of particular interest. A notable example are cities located on islands. In this regard, the experience of Singapore stands out, as it does not have a high-density urban area. Additionally, territories with a complex, dissected topography may be included in this category. These areas face a unique set of challenges. The limited area for development does not lead these areas along the path of expanding agglomeration zones, but rather orients them towards a more rigid internal structure. Regulation of land use rules, issues related to owning private cars, and other factors pose challenges for these areas, not in terms of environmental concerns, but due to limited land resources. Depending on how effectively a city addresses these challenges, its position in the final rating may vary significantly. It can be assumed that the seemingly unlimited land resources of suburban areas represent a "path of least resistance" that many cities pursue. At some point in the future, this source is likely to become depleted, at which point the accumulated experience in "sealing off innovations" from island cities may become particularly valuable.

Regarding the technological advancement of global cities, it is important to consider the topic of artificial intelligence (AI). We can assume that the trend of "digital twins", which has not yet gained widespread adoption, will soon give way to the trend of "urban AI". This AI will assist governments in communicating with citizens. This could potentially impact our index methodology.

However, the rapid development of digital technologies should be accompanied by a correspondingly robust legal framework. This is not just about incorporating into regulatory documents those innovations that have transformed our cities in recent years, in connection with the emergence of the "smart city" concept and related systems. It also involves developing documents that ensure the balanced growth of urban cores and their surrounding areas, providing maximum convenience and a diverse range of life styles for all citizens.

Any cross-country rating of cities is an inevitable simplification of reality. To make cities comparable, some of their unique local characteristics must be ignored. However, this does not imply that such data is unimportant. It becomes crucial when attempting to understand the success or failure of a particular area. Therefore, in the future, we plan to compile success stories from leading cities. This not only enriches our understanding of urban areas in the UIEI Core Rating, but also identifies potential areas for exchange of experience between cities.

Our team will be releasing a comprehensive report on the Second Edition of the UIEI Core Rating during the first half of 2025. Please stay tuned for further updates.

International Consortium

